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ABSTRACT
A lumped heat transfer model and parameter estimation
technique are proposed for determining key parameters as-
sociated with a heat fluxDifferential Scanning Calorime-
ter (DSC). The development of a mathematical algorithm
utilizing this model and technique is illustrated in Part I
of this two-part paper. In Part II, a computational algo-
rithm which has been constructed for the proposed method
is presented. The algorithm uses a conventional fourth-
order Runge-Kutta scheme to solve the necessary ordinary
differential equations. Results from a numerical experi-
ment are discussed. These results demonstrate the robust
and accurate nature of the technique but also suggest areas
of possible improvement for both computational efficiency
and parameter resolution. Possible improvements include
the introduction of an elliptic time treatment in the form of
orthogonal collocation as a replacement for the traditional
time-marching scheme.
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1 Introduction

This paper presents numerical results using the algorithm
outlined in the companion article [1]. The goal of this
study involves developing a practical inverse technique that
can be applied to enhance conventional DSC analysis. The
methodology described in [1] is presently tested for re-
construction accuracy and stability. It is interesting to
note that the proposed methodology encompasses elements
from both parameter estimation and function reconstruc-
tion.

To begin, a direct problem is defined in which the sys-
tem parameters���, ���, ���, ���, and forcing function

�� ��� are specified. The outcomes from the direct analysis
lead to converged numerical results for�����, �����, ������
and������. Next, noise is added to the direct solution for
������ and������. These newly constructed data sets now
represent the input to the inverse problem. This paper be-
gins by describing the test problem from which data are
numerically simulated for the sample and reference plates.
Once these data are obtained, numerical testing of the in-
verse method can be considered with the goal of recaptur-
ing the system parameters and the furnace wall temperature
associated with defining the direct problem.

Before delving into the numerics, a sidebar is offered
with regard to the mathematical model under consideration.
It should be observed from the proposed reduced physical
model [1] that no inter-radiative coupling exists between
the sample and reference sides. Radiative heating from
the furnace wall is the driver to both regions. Addition-
ally, all conductive communication is solely between each
plate-container region. This lack of cross communication
between the reference and sample necessitates the use of a
two-concurrent data stream model. The ultimate goal is to
develop a method that can reconstruct the furnace tempera-
ture and system heat transfer parameters. It should also be
noted that most, if not all, previous studies assume a priori
knowledge of the furnace wall temperature. A pure param-
eter estimation study results once this function is assumed
known. Many DSC’s have LED readouts that provide the
user with some indication of the furnace temperature. This
readout, however, may not truly represent the furnace����
temperature,�� ���.

2 Solution of the Direct Problem

In order to illustrate the robust nature of the analytical
model presented in the first part of this paper [1], a direct
problem has been formulated to provide computationally



generated temperature data for both the sample and refer-
ence plates. Naturally, this direct problem is based upon
the same simplified model and governing equations used to
develop the inverse parameter estimation algorithm, that is,
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In this case, the parameters���	���	 ���	 and��� are
assumed to be known and, as a first approximation, inde-
pendent of temperature.

Unlike with the more difficult inverse problem, the
furnace wall temperature,�� , is assumed to be a known
function in the direct problem and so provides the forcing
mechanism for the system. As a result, the governing equa-
tions for the sample and sample plate temperatures are de-
coupled from the equations for the reference and reference
plate temperatures, producing two systems of two coupled
equations each. These systems of nonlinear ordinary differ-
ential equations may be easily solved using a fourth–order
Runge–Kutta scheme.

It is reasonable to assume that the furnace response
to a change in applied heating or cooling rate is rapid and
that the rate is maintained as constant throughout the heat-
ing or cooling process. A temperature profile based on
these assumptions is shown in Figure 1. The time inter-
val � � � � �� represents a short amount of the isother-
mal heating period used to establish initial conditions for
the DSC elements. For the interval�� � � � ��, heat-
ing at a constant rate occurs. Likewise, for the interval
�� � � � ����, cooling at the same constant rate occurs.
A small response lag has been included near the times of
transition to heating or cooling to provide a more realistic
temperature profile. Based on this representation of fur-
nace wall temperature, the following driving function can
be constructed
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Figure 1. Generic furnace wall temperature profile used as
the driving function for the direct problem.

where

� � �� ��
 (2e)

Additionally, � is the heating rate in Kelvins per second,
and� is a coefficient which is proportional to the furnace
response time. In order to maintain continuity in both tem-
perature and heating rate,�� is chosen such that

�� � �� �
�� � ��

�
	 (3a)

yielding the expression for maximum attained furnace tem-
perature as
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�
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The model for the direct problem as described above
is stable and produces accurate and reliable temperature
data for use in the parameter estimation algorithm.

3 Computational Algorithm for the Parame-
ter Estimation Problem

An optimized computational algorithm, written in ANSI
Standard Fortran, has been developed based on the math-
ematical model introduced in the first part of this paper
[1]. The basic logic for this algorithm is illustrated by the
flowchart in Figure 2. While the flowchart is for the most
part self-explanatory, some aspects of the algorithm and its
design merit further discussion.
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Figure 2. Basic flowchart for DSC parameter estimation
computational algorithm.

The first point of interest is the basis set used in the
functional expansion for the radiative contribution from the
furnace wall,� �

� . The numerical results presented in this
paper have been generated utilizing Chebyshev polynomi-
als of the first kind [2]. This particular basis set has been
chosen for the initial test runs because it possesses sev-
eral advantageous computational attributes and has been
used previously to solve problems in many disciplines with
considerable success [3–6]. It should be noted, however,
that other choices exist which may yield the desired results
without requiring as many expansion terms.

Another important detail of the computational algo-
rithm is the manner in which initial temperature profiles are
calculated. Because the quasilinearization scheme is based
on the Newton-Raphson technique, the ’guesses’ employed
as established values for the first iteration can considerably

influence the rate of convergence and, if physically unre-
alistic, the final results. Therefore, it is beneficial to be-
gin the numerical simulation with educated estimates. For
the algorithm presented here, the initial temperature pro-
files are determined with respect to the measured temper-
ature data and the primary estimates for the unknown sys-
tem parameters. The process involves the development of
functional representations for the measured data streams
and resolution of a direct problem for both the sample-side
and reference-side components. This small expenditure of
computational effort helps to ensure faster convergence and
increased stability.

Finally, a few comments should be made regarding
iterative convergence criteria. The present scheme has the
capability to employ the infinity norm of either the system
parameters or the sensitivity functions between iterations.
While the latter convergence criteria are more rigorous, it
has been found that for the numerical experiment presented
the former are sufficient to obtain results consistent with
the likely precision of the DSC instrument (four significant
digits).

4 Numerical Results

A numerical experiment has been designed to test the pro-
posed model and algorithm. It should be reiterated that
the model and numerical implementation are preliminary
and some refinement is expected before using ’real’ exper-
imental DSC data. Component masses for the theoretical
two-pan heat-flux DSC are defined as��� � �
�		
 g,
��� � �
���� g, ��� � �
�	� g, and��� � �
��	�
g. For the purpose of this investigation, all components
are assumed to be made of pure platinum and possess a
corresponding temperature-independent average value for
specific heat capacity,� � �
�	� J/g-K. Using this sys-
tem, a direct problem has been solved for a furnace wall
temperature profile as described in Fig. 1 with�� � �� s,
�� � ���	 s, �� � ���� s, ���� � ��� s, �� � ��� K,
���� � �	� K, and� � �
��� K/s (corresponding to 20
K/min). The resulting discrete temperature values for both
the sample and reference plates are designated as data for
the parameter estimation algorithm.

Both errorless and noisy data are used as input for
the computational algorithm. Noisy data are generated in
accordance to

����� � ������� � ��������������	 (4a)
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� � �	 � � � 	�	 (4b)

where�� � ���	 with �� � ������ , � is the total num-
ber of data points,� is the noise factor chosen from the
closed interval [0,1], and������� represents the� � ran-
domly drawn real number from the closed interval [-1,1].

To begin, consideration of ideal, errorless data (� � �
and� � ����) is used to illustrate recovery of the in-
put parameters,���, ���, ���, ��� and the furnace wall



temperature�� ���. Converged estimations for the unknown
system parameters compared with the values used to solve
the direct problem are shown in Table 1. Likewise, the re-
constructed temperature profiles are presented in Fig. 3.
Convergence occurs when eighty terms (� � 
�) are used
in the functional expansion for� �

� . As can be seen, the pro-
posed model produces excellent results. It should be noted
that this simulation resolves� � � parameters simultane-
ously.

Parameter Exact Estimated

��� 2.500E-01 2.498E-01
��� 2.700E-01 2.696E-01
��� 1.000E-03 1.001E-03
��� 2.500E-04 2.490E-04

Table 1. Comparison of exact and numerically estimated
values for the DSC system parameters. Eighty terms have
been used in the functional expansion (� � 
�).
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Figure 3. Temperature profiles for the four DSC compo-
nents and the reconstructed furnace wall temperature gen-
erated by the parameter estimation algorithm (� � 
�).

Figure 4 presents the trend toward convergence for
the numerical estimations of the parameters as the number
of expansion coefficients in the reconstruction of�� ��� is
increased. Figure 4(a) displays results for the conduction-
related parameters while Fig. 4(b) presents the radiation-
related parameters. These figures indicate that accurate and
stable reconstruction of the thermophysical parameters are
obtained as the number of terms� in the expansion for
�� ��� is increased. For the chosen basis set, approximately
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(a) Convergence for conduction-related parameters��� and
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(b) Convergence for radiation-related parameters��� and
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Figure 4: Numerical convergence of unknown system pa-
rameters with respect to the number of expansion terms
used to reconstruct the furnace wall temperature.

80 terms of the series are required. As mentioned earlier, a
change of basis to one which is better tailored to the profile
of � �

� ��� can substantially reduce the number of coefficients
required in reconstructing the furnace wall temperature.

Figures 5a-c display comparisons between the direct
and reconstructed inverse predictions for (a)�� ���, (b)
�����, and (c)�����. It is clear that the direct results are
recovered by the proposed method. Figures 6a-c illustrate
convergence results as� is increased for (a)�� ���, (b)
�����, and (c)�����. Again, it appears that� � 
� is
required for establishing an accurate prediction.

Figures 7–15 present the baseline and sensitivity
functions pertaining to the system parameters for the four
DSC components. As expected, the baseline functions
shown in Fig. 7 closely follow the shape of their respec-
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(a)�� reconstructed by the parameter estimation code vs.��
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(b) �� reconstructed by the parameter estimation code vs.��

generated by the direct code.
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(c) �� reconstructed by the parameter estimation code vs.��

generated by the direct code.

Figure 5: Comparison of the direct solution temperature
profiles with those reconstructed by the parameter estima-
tion algorithm (� � 
�).
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(a) Convergence for reconstructed�� with respect to number
of expansion terms.
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(b) Convergence for reconstructed�� with respect to number
of expansion terms.
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(c) Convergence for reconstructed�� with respect to number
of expansion terms.

Figure 6: Convergence as a function of the number of ex-
pansion terms,�, for the reconstructed temperature func-
tions of selected components.
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Figure 7: Converged baseline functions,�� ���, ������, �����,
������, for the four DSC components.
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Figure 8: Sensitivity functions corresponding to��� and
��� for the sample component.

tive component temperature profiles and so indicate their
leading influence in the reconstruction of the temperature
functions. More interesting, however, is the behavior of the
sensitivity functions seen in Figs. 8–11. Here, the lack of
cross communication mentioned earlier is clearly demon-
strated by the fact that�����, which corresponds to conduc-
tion between the reference plate and container, is uniformly
zero for the sample-side components and�����, which cor-
responds to conduction between the sample plate and con-
tainer, is uniformly zero for the reference-side components.
This behavior underscores the need for two concurrent data
streams in the model since information pertaining to all the
parameters must be present in the data used for minimiza-
tion.

Finally, to illustrate a realistic situation, some random
error is introduced into the data streams for�������

�
��� and

�������
�
���. The value of� has been chosen such that the

maximum error is��
�	K. The reconstructed furnace wall
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Figure 9: Sensitivity functions corresponding to��� and
��� for the reference component.
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Figure 10: Sensitivity functions corresponding to� �� and
��� for the sample plate.
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Figure 11: Sensitivity functions corresponding to� �� and
��� for the reference plate.



t (s)

z(s
)

0 1000 2000 3000 4000 5000 6000

0

100

200

300

400

500

z3

z4

Figure 12: Sensitivity functions corresponding to��� and
��� for the sample component.
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Figure 13: Sensitivity functions corresponding to��� and
��� for the reference component.
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Figure 14: Sensitivity functions corresponding to��� and
��� for the sample plate.
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Figure 15: Sensitivity functions corresponding to��� and
��� for the reference plate.

temperature profile, along with its counterpart used to drive
the direct problem, are shown in Fig. 16. These profiles are
graphically equivalent and indicate that the algorithm re-
mains stable in the presence of noise. Similarly, converged
estimations of the system parameters are compared with
the exact values in Table 2. As expected, noise in the data
has an affect on accuracy, but the results are still quite good
and fall within acceptable tolerances. It can be envisioned
that parameter recovery is an area where time collocation,
which minimizes the effects of local errors by taking the en-
tire domain into account, will provide substantial improve-
ment over traditional time-marching schemes.

Parameter Exact Estimated

��� 2.500E-01 2.506E-01
��� 2.700E-01 2.760E-01
��� 1.000E-03 9.754E-04
��� 2.500E-04 2.744E-04

Table 2. Comparison of exact and numerically estimated
values for the DSC system parameters with error intro-
duced into the data. 90 terms have been used in the func-
tional expansion (� � ��).
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Figure 16: Reconstructed�� generated by the parameter
estimation algorithm with error introduced into the data
(� � ��) compared with�� used in the direct code.

5 Conclusions

This paper illustrates the effectiveness of the proposed in-
verse algorithm presented in [1]. The results are encour-
aging and refinement of the approach is presently under-
way. Several improvements can be identified including: (1)
changing the basis set used in representing�� ��� in order
to reduce the parameter set size associated with the expan-
sion coefficients for�� ���; and (2) using a time-collocation
approach to substantially reduce the memory and CPU re-
quirements for solving the system of initial-value problems
in the sensitivity variables. Item 2 permits alignment in-
dependence between the computational grid and experi-
mental time domain without requiring any intermediate in-
terpolation or numerical grid/experimental data point co-
existence. This produces a substantial reduction in pro-
gramming effort in the entire minimization process and in
the updating procedure associated with the quasilineariza-
tion method. Time collocation also assists in stabilizing
inverse predictions because of the whole-domain account-
ability.

Model refinement is also being pursued. The present
set of papers demonstrates a numerical approach that
warrants further consideration and implementation refine-
ments. The goal of the research effort under consideration
by the authors involves modeling real-world DSC events.
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